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Abstract

By anology with continued fraction we will consider for given sequences
(pn) ; (an) ; (bn)
�nite and in�nite "additive" and "multiplicative" Radical Constructions:

(SF) p1

r
a1 + b1

p2

q
a2 + b2 p3

p
a3 + :::+ bn pn+1

p
an+1 ;

(SI) p1

r
a1 + b1

p2

q
a2 + b2

p3

p
a3 + :::+ bn pn+1

p
an+1 + :::: ,

(PF) p1

r
a1

p2

q
a2 p3

p
a3 pn+1

p
an+1;

(PI) p1

r
a1

p2

q
a2

p3

p
a3 pn+1

p
an+1 + ::::

which named, respectively, �nite and in�nite nested (continued)
radicals (additive and multiplicative).
As usual, the basis for the variations will be concrete problems.

Part 1. Inequalities and boundedness.
Problem1.

a) Prove that rn :=

s
2

r
3

q
4
p
::::
p
n+ 1 < 3; n 2 N;

b) Prove that rn :=

s
2

3

r
3 4

q
4 5
p
:::: n
p
n < 3; n 2 N. ( r1 = 1

p
1 = 1 ).

Solution.
a)
Solution 1.
Since rn = 2

1
2 3

1
22 4

1
23 :::: (n+ 1)

1
2n () r2

n

n = 22
n�1 �32n�2 �42n�3 :::: (n+ 1)2

0

then, applying AM-GM Inequality we obtain
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Variations on theme of Nested Radicals

r2
n

n �
�
2 � 2n�1 + 3 � 2n�2 + :::+ n � 21 + (n+ 1) � 20

2n�1 + 2n�2 + :::+ 2 + 1

�2n�1+2n�2+:::+2+1
:

Since 2n�1 + 2n�2 + :::+ 2 + 1 = 2n � 1;
2 � 2n�1 + 3 � 2n�2 + :::+ n � 21 + (n+ 1) � 20 = 3 � 2n � n� 2 then

r2
n

n �
�
3 � 2n � n� 2

2n � 1

�2n�1
=

�
3� n� 1

2n � 1

�2n�1
=) rn < 3

2n�1
2n < 3:

Solution 2.

Since ln rn =
ln 2

2
+
ln 3

22
+:::+

ln(n+ 1)

2n
and for any natural k holds inequality

ln (k + 1) < 2 ln (k + 2)� ln (k + 3) ()
(k + 1) (k + 3) < (k + 2)

2 () 0 < 1
then

ln rn =
nP
k=1

ln (k + 1)

2k
<

nP
k=1

2 ln (k + 2)� ln (k + 3)
2k

=

nP
k=1

�
ln (k + 2)

2k�1
� ln (k + 3)

2k

�
=

ln (1 + 2)

21�1
� ln (n+ 3)

2n
= ln 3� ln (n+ 3)

2n
< ln 3 =) rn < 3:

b)
Solution 1.
Applying Weighted AM-GM Inequality to the numbers 2; 3; :::; n

with weights w1 =
1

2!
; w2 =

1

3!
; :::; wn�1 =

1

n!
we obtain

rn = 2
1
2! � 3

1
3! � ::: � n

1
n! <

0B@2 � 12! + 3 � 13! + :::+ n � 1n!1

2!
+
1

3!
+ :::+

1

n!

1CA
1

2!
+
1

3!
+:::+

1

n!

=

0BB@
1

1!
+
1

2!
+ :::+

1

(n� 1)!
1

2!
+
1

3!
+ :::+

1

n!

1CCA
1

2!
+
1

3!
+:::+

1

n!

<

0B@1 + 1
1

2!
+
1

3!
+ :::+

1

n!

1CA
1

2!
+
1

3!
+:::+

1

n!

< e:

Solution 2.
Since lnn < n� 1; n � 2 then
ln rn =

ln 2

2!
+
ln 3

3!
+ :::+

lnn

n!
<
1

2!
+
2

3!
+ :::+

n� 1
n!

=

�
1

1!
� 1

2!

�
+

�
1

2!
� 1

3!

�
+ :::+

�
1

(n� 1)! �
1

n!

�
= 1� 1

n!
< 1 =) rn < e < 3:

Remark 1.(Better upper bound for rn):
Using more precise inequality lnn < n� 1; n � 2 we obtain
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ln rn =
ln 2

2!
+
ln 3

3!
+:::+

lnn

n!
<
ln 2

2
+
ln 4

6
+
ln 4

24
+

�
1

4!
� 1

5!

�
+:::+

�
1

(n� 1)! �
1

n!

�
=

ln 2

2
+
ln 2

3
+
ln 2

12
+
1

4!
� 1

n!
<
11 ln 2

12
+
1

24
:

Since
11 ln 2

12
+
1

24
< ln 2 () 1

2
< ln 2 () 1 < ln 4 then rn < 2:

The same upper bound for rn gives
Solution 3.
Since n! � 2 � 3n�2; n � 2 and max

n2N
n
1
n = 3

1
3 then for k � 3 holds

k
1
k! =

�
k
1
k

� 1
(k�1)!

� 3
1

3(k�1)! � 3
1

2�3k�2 and, therefore,

rn = 2
1
2! � 3

1
3! � ::: � n

1
n! � 2

1
2 � 3

1
2�3 � ::: � 3

1
2�3n�2 <q

2 � 3
1
3+

1
32+:::+

1
3n�2+::: =

q
2 � 3

1
2 = 4

p
12 < 2:

Remark 2.
As generalization of considered above Problem 1 we will �nd upper bounds

for rn (k) :=
k

q
k k+1

p
(k + 1) ::: n

p
n and r (k) := k

q
k k+1

p
(k + 1) ::: n

p
n::::

Lemma 1.
For any natural numbers n � 3 and p holds following inequalities:

(I) n
1
np > (n+ 1)

1
(n+1)p ;

(II) n
1
np > (n+ p)

1
(n+1)(n+2):::(n+p) :

Proof. (using Math Induction by p 2 N)
Inequality (I)

1. For p = 1 we already have n
1
n > (n+ 1)

1
n+1 :

2. For any p 2 N assuming n
1
np > (n+ 1)

1
(n+1)p we obtain

n
1

np+1 =

�
n
1
np

� 1
n
>

�
(n+ 1)

1
(n+1)p

� 1
n

>

�
(n+ 1)

1
(n+1)p

� 1
n+1

= (n+ 1)
1

(n+1)p+1 :

Inequality (II).

1. For p = 1 we already have n
1
n > (n+ 1)

1
n+1

2. For any p 2 N using inequality (I) and assuming that inequality

n
1
np > (n+ p)

1
(n+1)(n+2):::(n+p) holds for any n � 3 and we obtain

n
1

np+1 =

�
n
1
np

� 1
n
>

�
(n+ 1)

1
(n+1)p

� 1
n

>

�
((n+ 1) + p)

1
((n+1)+1):::(n+1+p)

� 1
n

>�
(n+ 1 + p)

1
(n+2):::(n+1+p)

� 1
n+1

= (n+ (p+ 1))
1

(n+1)(n+2):::(n+p+1)

Applying inequality (II) for (n; p) = (k; p) ;where p = 1; 2; :::; n� k
to rn (k) :=

k

q
k k+1

p
(k + 1) ::: n

p
n; 3 � k � n we obtain

c
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rn (k) = k
1
k � (k + 1)

1
k(k+1) � ::: � n

1
k(k+1):::n =

k
1
k �
�
(k + 1)

1
k+1 � (k + 2)

1
(k+1)(k+2) � ::: � n

1
(k+1):::n

� 1
k

<

k
1
k �
�
k
1
k � k

1
k2 � ::: � k

1
kn�k

� 1
k
= k

1
k+

1
k2+:::+

1
kn�k+1 < k

1
k�1 :

So, rn (k) < k
1

k�1 and since rn (k) " (n) then we have
r (k) := lim

n!1
rn (k) � k

1
k�1 :

Problem 2.
a) For any real a > 0 determine upper bound for

an =

r
a+

q
a+

p
a+ :::+

p
a(n-roots), n 2 N;

b) Let an :=

r
n+

q
n� 1 +

p
n� 2 + :::+

p
1

p
n

; n 2 N:

Prove that sequence (an)N is bounded.
Solution.
a) Sequence (an)N can be de�ned recursively as follows
an+1 =

p
a+ an; n 2 N and a1 =

p
a:

In supposition that positive number M is upper bound for (an)N and
since then an+1 =

p
a+ an �

p
a+M we claimp

a+M �M () a+M �M2 () M2 �M � a � 0 ()

M � 1 +
p
4a+ 1

2
:

Let M :=
1 +

p
4a+ 1

2
:Since a1 < M ()

p
a <

1 +
p
4a+ 1

2
()

p
4a �

p
4a+ 1 + 1 obviously holds and for any n 2 N; assumption

an �M implies an+1 =
p
a+ an �

p
a+M �M;

then by Math Induction an �M for any natural n:

Remark.
If a = 2 then an+1 =

p
2 + an; n 2 N where a1 =

p
2 = 2 cos

�

4
and,

therefore, a2 =
r
2 + 2 cos

�

22
= 2 cos

�

23
:

For any n 2 N assuming an = 2 cos
�

2n+1

we obtain an+1 =
p
2 + an =

r
2 + 2 cos

�

2n+1
= 2 cos

�

2n+2
:

Thus, by Math Induction we have an = 2 cos
�

2n+1
< 2 for any n 2 N:

Formula M =
1 +

p
4a+ 1

2
for a = 2 gives us M = 2 as well.
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b) Since

r
n+

q
n� 1 +

p
n� 2 + :::+

p
1 >

p
n then an > 1:

Note that for any n 2 N holds inequality an+1 <
p
1 + an :

Indeed, an+1 =

q
n+ 1 +

p
n+ :::+

p
1

p
n+ 1

r
1 +

1

n+ 1

q
n+

p
n� 1 + :::+

p
1 <s

1 +
1p
n

q
n� 1 +

p
n� 2 + :::+

p
1 =

p
1 + an

For any n 2 N� f1g repeatedly applying this inequality we obtain

an <
p
1 + an�1 <

p
1 +

p
1 + an�2 < ::: <

r
1 +

q
1 +

p
1 + :::+

p
a1 =r

1 +

q
1 +

p
1 + :::+

p
1(n-roots) and,sincer

1 +

q
1 +

p
1 + :::+

p
1 � 1 +

p
4 � 1 + 1
2

=
1 +

p
5

2
then an <

1 +
p
5

2
for any n 2 N:

Remark.

Since

r
n+

q
n� 1 +

p
n� 2 + :::+

p
1 <

p
n+ 1 for any n 2 N ( can be

proved by Math Induction) then an <
p
n+ 1p
n

< 2; for any n 2 N and,

therefore, (an)N is bounded from above.

Problem 3.
For any natural n � 2 prove inequalitys

2 +
3

r
3 + `4

q
4 + 5

p
5 + :::+ n

p
n < 2:

Solution.
For any natural n � 2 let r0 (n) = n

p
n and rk (n) =

n�k
p
n� k + rk�1 (n);

where 0 � k 2 f1; 2; :::; n� 1g :
Then r1 (n) = n�1

p
n� 1 + rn (0) = n�1

p
n� 1 + n

p
n ; r2 (n) =

n�2
p
n� 2 + r1 (n) =

n�2
q
n� 2 + n�1

p
n� 1 + n

p
n; ::; rk (n) =

n�k

r
n� k + n�(k+1)

q
(n� (k + 1)) + :::+ n�1

p
n� 1 + n

p
n;s

2 +
3

r
3 + `4

q
4 + 5

p
5 + :::+ n

p
n = rn�2 (n)

and we have to prove that rn�2 (n) < 2:

For further we need the following
Lemma 2.
For any n � 3 and real h > 0 holds inequality n

p
n+ h � n+1

p
n+ 1 + h:

Proof.
We have n

p
n+ h � n+1

p
n+ 1 + h () (n+ h)

n+1 � (n+ 1 + h)n ()

c
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n+ h �
�
n+ 1 + h

n+ h

�n
where latter inequality follows from

n+ h > 3 > e >

�
1 +

1

n

�n
>

�
1 +

1

n+ h

�n
=

�
n+ 1 + h

n+ h

�n
:

Remark.
The Lemma can be proved by Math Induction without reference to e:
Note that n

p
n+ h > n+1

p
n+ 1 + h () an > bn; where an := (n+ h)

n+1
;

bn := (n+ 1 + h)
n
:

1. Base of Math Induction.
a1�b1 = (3 + h)4�(4 + h)3 = (3 + h)4�(3 + h)3�3 (3 + h)2�3 (3 + h)�1 =
(3 + h)

3
((3 + h)� 1)� 3 (3 + h)2 � 3 (3 + h)� 1 =

(3 + h)
2
((3 + h) (2 + h)� 3)� 3 (3 + h)� 1 =

(3 + h)
2 �
h2 + 5h+ 3

�
� 3 (3 + h)� 1 > 3 (3 + h)

2 � 3 (3 + h)� 1 =
3 (3 + h) (2 + h)� 1 > 18� 1 = 17:
2. Auxiliary inequality.

For any n 2 N holds inequality
an+1
an

>
bn+1
bn

() an+1bn > anbn+1:

Indeed,
an+1bn > anbn+1 () (n+ 1 + h)

n+2�(n+ 1 + h)n > (n+ h)n+1�(n+ 2 + h)n+1 ()
: �

(n+ 1 + h)
2
�n+1

>
�
(n+ h)

2
+ 2 (n+ h)

�n+1
()

(n+ h+ 1)
2
> (n+ h)

2
+ 2 (n+ h) () 1 > 0:

3. Step of Math Induction:

For any natural n � 3 assuming an > bn and using inequality
an+1
an

>
bn+1
bn

we obtain an+1 = an �
an+1
an

> bn �
bn+1
bn

= bn+1: �
Corollary.
For any n � 3 and real h > 0 holds inequality 3

p
3 + h � n

p
n+ h:

Now we will prove that for any 0 � k � n� 3 holds inequality

rn (k) �
3

r
3 +

3

q
3 +

`3
p
3 + :::+ 3

p
3 (k + 1 roots),

using Math. Induction by k:
1.If k = 0 then n

p
n � 3

p
3:

2.For any k such that 1 � k � n�3 holds rk�1 (n) �
3

r
3 +

3

q
3 +

`3
p
3 + :::+ 3

p
3

(k roots) then, applying Corollary to h = rk�1 (n), we obtain

rk (n) =
n�k
p
n� k + rk�1 (n) <

3

vuut
3 +

3

s
3 +

3

r
3 +

`3

q
3 + :::+

3
p
3(k+1 roots)

Let a1 =
3
p
3 and an+1 = 3

p
3 + an , n 2 N then an < 2 for any n 2 N.

Indeed, 3
p
3 < 2 and from supposition an < 2 we obtain

c
1985-2018 Arkady Alt 6



Variations on theme of Nested Radicals

an+1 =
3
p
3 + an <

3
p
3 + 2 = 3

p
5 < 2:

Hence, rk (n) < 2 for any 0 � k � n� 3 and, therefore,
rn�2 (n) =

p
2 + rn�3 (n) <

p
2 + 2 = 2:

For establishing upper bounds of nested radicals represented in the
next problem will be useful
Lemma 3.
For any positive real a; b and any natural p; n and k 2 f0; 1; 2; :::; ng let

Rk (n) :=
p

q
a � bpn�k + p

p
a � bpn�k+1 + :::+ p

p
a � bpn ;(k + 1 radicals)

Then Rk (n) = bp
n�k�1 p

q
a+ p

p
a+ :::+ p

p
a(k + 1 radicals).

Proof. (Math Induction by k 2 f0; 1; 2; :::; ng).
First of all note that Rk (n) can be de�ned recursively as follows:
R0 (n) :=

p
p
a � bpn ; Rk (n) = p

p
a � bpn�k +Rk�1 (n); k 2 f1; 2; :::; ng

Base of M.I.
R0 (n) =

p
p
a � bpn = bp

n�1
p
p
a;R1 (n) =

p
p
a � bpn�1 +R0 (n) =

p
p
a � bpn�1 + p

p
a � bpn =

p
p
a � bpn�1 + bpn�1 p

p
a = bp

n�2
p
p
a+ p

p
a:

Step of Math Induction.

For any k 2 f1; 2; :::; ng assuming Rk�1 (n) = bp
n�k p

q
a+ p

p
a+ :::+ p

p
a

(k radicals) we obtain

Rk (n) =
p
p
a � bpn�k +Rk�1 (n) =

p

r
a � bpn�k + bpn�k p

q
a+ p

p
a+ :::+ p

p
a =

bp
n�k�1 p

q
a+ p

p
a+ :::+ p

p
a(k + 1 radicals).

Corollary 1.
Let (an)N be sequence of non negative real numbers such that for
some positive real a and b holds inequality an � a � b2n ; n 2 N:
Then for any n 2 N; k 2 f0; 1; 2; :::; ng holds inequality

(1)

r
an�k +

q
an�k+1 + :::+

p
an � b2

n�k�1

r
a+

q
a+ :::+

p
a �M �b2

n�k�1
:

Proof.
In particular for p = 2 from Lemmas 3 and 4 follows

r
an�k +

q
an�k+1 + :::+

p
an �

r
a � b2n�k +

q
a � b2n�k+1 + :::+

p
a � b2n =

b2
n�k�1

r
a+

q
a+ :::+

p
a �M � b2

n�k�1
;where M =

1 +
p
1 + 4a

2

(see solution to Problem 2a).

Corollary 2.(Criteria of convergence
q
a1 +

p
a2 + :::+

p
an).
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Let (an)N be sequence of non negative real numbers and let rn :=
q
a1 +

p
a2 + :::+

p
an:

Then sequence (rn)N is bounded from above i¤ an � a �b2n ; n 2 N for some
positive a; b:
Proof.
Let M be some upper bound for (rn)N ;that is rn � M for any n 2 N and

we obtain

a
1=2n

n =

r
0 +

q
0 + :::+

p
0 +

p
an �

q
a1 +

p
a2 + :::+

p
an �M:Hence, an �

a � b2n ;
where a = 1 and b =M:
If an � a�b2n ; n 2 N for some positive a; b then by corollary 1 for k = n�1 we

obtain
rn �M � b20 =M � b:

Problem 4.
For any n 2 N �nd upper bound for n�nested radical (contain n radicals):

a.

r
220 +

q
221 +

p
222 + :::+

p
22n�1 ;

b.

r
10 +

q
21 +

p
22 + :::+

p
2n;

c.

r
1 +

q
2 +

p
3 + :::+

p
n;

d.

r
1 +

q
3 +

p
5 + :::+

p
2n� 1;

e.

r
12 +

q
22 +

p
32 + :::+

p
n2

f.

r
1! +

q
2! +

p
3! + :::+

p
n!

Solution.
a.Since an = 22

n�1
= 1 �

�p
2
�2n

then by corollary for k = n; a = 1; b =
p
2

we obtainr
220 +

q
221 +

p
222 + :::+

p
22n�1 =

p
2 �
r
1 + 1

q
1 +

p
1 + :::+

p
1 �

p
2max

(
1;
1 +

p
5

2

)
=

p
2 +

p
10

2
<
5

2
:

b. Since n � 2n; n 2 N [ f0g then 2n � 22n�1 and, therefore,r
10 +

q
21 +

p
22 + :::+

p
2n �

r
10 +

q
221�1 +

p
222�1 + :::+

p
22n�1 <r

1 +

p
2 +

p
10

2
<

r
1 +

5

2
< 2:

c.,d. Noting that n � 2n� 1 < 22n�1 for any n 2 N we obtainr
1 +

q
2 +

p
3 + :::+

p
n <

r
1 +

q
3 +

p
5 + :::+

p
2n� 1 <

c
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r
10 +

q
21 +

p
22 + :::+

p
2n�1 < 2:r

12 +

q
22 +

p
32 + :::+

p
n2 <

r
1 +

q
22 +

p
32 + :::+

p
n2 <r

220 +

q
221 +

p
222 + :::+

p
22n�1

e. Since 2n� 1 � n2 < 22
n�1

for any n 2 N (because n2 � 2n for n � 4;
implies 2n � 22n�1 for any n 2 N [ f0g and obviously n2 � 22n�1

for n = 1; 2; 3) thenr
12 +

q
22 +

p
32 + :::+

p
n2 <

r
220 +

q
221 +

p
222 + :::+

p
22n�1 <

5

2
:

f.. First note that for any n 2 N holds inequality n! < 22n�1 :

Indeed,
(n+ 1)!

n!
� 22

n

22n�1
() n+ 1 � 22n�1 for any n 2 N:

Then since 1! < 22
1�1

= 2 and n! < 22
n�1

implies

(n+ 1)! = n! � (n+ 1)!
n!

< 22
n�1 � 2

2n

22n�1
= 22

n

we conclude by Math Induction that n! < 22
n�1

; n 2 N:
Hence,r
1! +

q
2! +

p
3! + :::+

p
n! <

r
1 +

q
221�1 +

p
222�1 + :::+

p
22n�1 <

2:

Problem 5.

Let an :=
3

s
1 +

3

r
2 + 3

q
3 + 3

p
4 + :::+ 3

p
n; n 2 N:

Prove that:
(1) a3n+1 < 1 +

3
p
2 � an for any n 2 N;

(2) Sequence (an)N is convergent.
Solution.
1. Noting that k � 23k�2 (k � 1) for any k 2 N� f1g (equality
holds only if k = 2) we obtain

a3n+1 = 1 +
3

s
2 +

3

r
3 +

3

q
4 + :::+ 3

p
n+ 3

p
n+ 1 <

1 +
3

vuut
2 +

3

s
233�2 � 2 + 3

r
234�2 � 3 + :::+ 3

q
23n�2 (n� 1) + 3

p
23n�1 � n =

1 +
3

s
2 +

3

r
233�2 � 2 + 3

q
234�2 � 3 + :::+ 3

p
23n�2 (n� 1) + 23n�2 3

p
n =

1 +
3

s
2 +

3

r
233�2 � 2 + 3

q
234�2 � 3 + :::+ 23n�3 3

p
(n� 1) + 3

p
n = ::: =

c
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1 +
3

s
2 + 2

3

r
2 + 3

q
3 + :::+ 3

p
(n� 1) + 3

p
n = 1 + 3

p
2 � an:

2: First we will prove that an < 3
p
4for any n 2 N:

Indeed, a1 = 1 <
3
p
4 and a2 =

3
p
1 + 3

p
2 < 3

p
4 () 3

p
2 < 3:

For any n 2 N assuming an < 3
p
4 we obtain

a3n+1 < 1 +
3
p
2 � an < 1 + 3

p
2 � 3
p
4 = 3 and, therefore, an+1 <

3
p
3 < 3

p
4:

Thus, by Math Induction, an < 3
p
4for any n 2 N and since an+1 > an

for any n 2 N we can conclude that sequence (an)N is convergent as
increasing and bounded from above.
Another solution of 1.
Noting that n � 23n�2 (n� 1) for any n 2 N� f1g (equality holds
only if n = 2)
For any n 2 N and k 2 N [ f0g such that k � n let r0 (n) := 0;and
rk+1 (n) =

3
p
n� k + rk (n); k 2 f0; 1; 2; :::; ng :Then an = rn (n) ;8n 2 N:

Also note that an+1 = rn+1 (n+ 1) =
3
p
1 + rn (n+ 1):

Note that r1 (n+ 1) = 3
p
n+ 1 < 3

p
23n+1�2 � (n+ 1� 1) =

23
n�2

3
p
n = 23

n�2
r1 (n) :

Let 1 � k � n be any. Assuming rk (n+ 1) < 23
n�k�1

rk (n) and since
n+ 1� k � 23n�k�1 (n� k) for any k = 0; 1; :::; n� 1(equality holds
only if k = n� 1) we obtain
rk+1 (n+ 1) =

3
p
n+ 1� k + rk (n+ 1) < 3

p
23n�k�1 (n� k) + 23n�k�1rk (n) =

23
n�k�2

3
p
(n� k) + rk (n) = 23

n�(k+1)�1
rk+1 (n) :

Thus, by Math Induction we proved rk (n+ 1) < 23
n�1�k

rk (n)
for any 0 � k � n: In particular for k = n we have
an+1 = rn+1 (n+ 1) =

3
p
1 + rn (n+ 1) <

3

q
1 + 23

n�1�n
rn (n) =

3
p
1 + 23�1rn (n) =

3
p
1 + 3

p
2an:

Thus, a3n+1 < 1 +
3
p
2 � an for any n 2 N:

2. In�nite nested square roots.
As usually we start from concrete problems which motivate consideration
of situation represented in this problems in general.

* F Problem 1.

Let rn :=

s
1 + f1

r
1 + f2

q
1 + f3

p
1 + ::::fn

p
1;

where fn be n� th Fibonacci number de�ned by
fn+1 = fn + fn�1; n 2 N and f0 = 0; f1 = 1:

Prove that sequence (rn) is convergent and �nd r := lim
n!1

rn;

that is �nd the value of in�nite nested root

r =

s
1 + f1

r
1 + f2

q
1 + f3

p
1 + :::+ :fn

p
:::

Solution.

c
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First we will �nd the sum f1 � q + f2 � q2 + :::+ fn � qn:
Let Sn (q) :=

nP
k=1

fkq
k and S (q) =

1P
n=1

fnq
n

Since �
�
fk � qk

�
= fk+1q

k+1 � fkqk = fkq
k+1 + fk�1q

k+1 � fkqk =
(q � 1) qkfk + qk�1fk�1 � q2 then
fn+1�qn+1�f1q =

nP
k=1

�
fk+1q

k+1 � fkqk
�
= (q � 1)

nP
k=1

qkfk+q
2

nP
k=1

qk�1fk�1 =

(q � 1)Sn (q) + q2
n�1P
k=1

qkfk = (q � 1)Sn (q) + q2
�

nP
k=1

qkfk � qnfn
�
=

(q � 1)Sn (q) + q2 (Sn (q)� qnfn) =
�
q2 + q � 1

�
Sn (q)� qn+2fn:

Hence,
�
q2 + q � 1

�
Sn (q) = fn+1 � qn+1 � f1q + qn+2fn ()

Sn (q) =
fn+1 � qn+1 � f1q + qn+2fn

q2 + q � 1 () Sn (q) =
f1q � qn+2fn � qn+1fn+1

1� q � q2 :

Since lim
n!1

n
p
fn = � then radius of convergency S (q) equal

1

�
=

p
5� 1
2

=

��:

If jqj <
p
5� 1
2

then lim
n!1

qn+2fn = lim
n!1

qn+1fn+1 = 0 and, therefore,

S (q) =
1P
n=1

fnq
n =

q

1� q � q2 for any such q:
In particular

Sn

�
1

2

�
=
f1
2
+
f2
22
+:::+

fn
2n
=
1=2� fn=2n+2 � fn+1=2n+1

1� 1=2� (1=2)2
= 2�fn

2n
�fn+1
2n�1

< 2:

Note that rn =

s
1 + f1

r
1 + f2

q
1 + f3

p
1 + :::+ :fn

p
1 =

s
1 +

r
c1 +

q
c2 +

p
c3 + :::+ :

p
cn

where cn = f2
n

1 f2
n�1

2 :::f2
1

n (c0 = 1)
Since by weighted AM-GM Inequality

2n+1
p
cn = f

1=2
1 f

1=22

2 :::f1=2
n

n <
1

2
�f1+

1

22
�f2+:::+

1

2n
�fn = Sn

�
1

2

�
and Sn

�
1

2

�
< 2

then cn < 22
n+1

and, therefore, sequence (rn)N is convergent by

Corollary 2.(Criteria of convergency of xn =
q
a1 +

p
a2 + :::+

p
an).

Numerical experiments give us r1 = 1: 414 2; r2 = 1: 553 8; r3 = 1: 628 8; :::;
r15 = 1: 753 1; r16 = 1: 755; r17 = 1: 755 1

So, in�nite nested root

s
1 + f1

r
1 + f2

q
1 + f3

p
1 + :::+ :fn

p
1 + ::: de�ne

numerical constant which approximately equal 1: 755:
Remains the question: Can be this constant expressed via already well known
constants?
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Problem 2 (Problem.(2062.Proposed by K.R.S. Sastry, Dodballa-
pur, India).
Find a positive integer n so that both the continued rootsr
1995 +

q
n+

p
1995 +

p
n+ :::

andr
n+

q
1995 +

p
n+

p
1995 + :::

converge to positive integers.
We will return to solving this problem later, having �rst studied
the behavior of the sequence

xn :=

vuuuuta+

vuuutb+

vuut
a+ :::+

s
:
a+ b+ (�1)n+1 (a� b)

2
(n roots), n 2 N

where a and b be positive real numbers.
The sequence (xn)N can be de�ned recursively as follows:

x1 =
p
a; x2 =

p
a+

p
b; xn+2 =

p
a+

p
b+ xn; n 2 N:

Let h (x) :=
p
a+

p
b+ x: Then xn+2 = h (xn) ; n 2 N:

Since x1 < x2 < x3 and for any n 2 N; assuming x2n�1 < x2n < x2n+1
we obtain h (x2n�1) < h (x2n) < h (x2n+1) () x2n+1 < x2n+2 < x2n+3:
Thus, by Math Induction proved that xn < xn+1 for any n 2 N:

Let m := max fa; bg and mn =

r
m+

q
m+

p
m:::+

p
m(n roots).

Since xn � mn;8n 2 N and mn �
1 +

p
4m+ 1

2
then (xn) is bounded

from above and, therefore, (xn)N is convergent as increasing sequence.

Let x := lim
n!1

xn >
p
a: Then x = lim

n!1
h (xn) = h

�
lim
n!1

xn

�
= h (x),p

a+
p
b+ x = x ()

�
x2 � a

�2
= x+ b ()

�
x� a

x

�2
=
1

x
+

b

x2
.

Note that
�
x� a

x

�2
strictly increase in (

p
a;1) (because x� a

x
> 0

for x >
p
a and increase in (0;1)) and 1

x
+

b

x2
strictly decrease.

Hence, since
�
x� a

x

�2
�
�
1

x
+

b

x2

�
is negative for x =

p
a

and it is positive for big enough positive x then equation�
x� a

x

�2
=
1

x
+

b

x2
has a unique solution on (

p
a;1) :

So, in�nite nested root

r
a+

q
b+

p
a+

p
b+ :::: lim

n!1
xn = x; where x

is unique solution of equation x4 � 2x2a� x+ a2 � b = 0 in (
p
a;1) :

Together with in�nite nested root

r
a+

q
b+

p
a+

p
b+ ::::
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we also will consider nested root

r
b+

q
a+

p
b+

p
a+ ::::

which is de�ned as limit of sequence (yn) de�ned recursively by
y1 =

p
b; y2 =

p
b+

p
a; yn+2 =

p
b+

p
a+ yn; n 2 N:

But, some times more convenient simultaneous de�nition sequences
(xn) ; (yn) by the following system of recurrences

(R)
�
xn+1 =

p
a+ yn

yn+1 =
p
b+ xn

; n 2 N

with initial conditions x1 =
p
a and y1 =

p
b:

As follows from the proved above both sequences are convergent
and, therefore, x := lim

n!1
xn >

p
a; y := lim

n!1
yn >

p
b

satis�es to system of equations

(E)
�

x =
p
a+ y

y =
p
b+ x:

Now we came back to solution of the Problem 1.
Solution
Consider two sequences (xn) ; (yn) de�ned by the system of
recurrences (R) for a = 1995 and b = n:

Then x =

r
1995 +

q
n+

p
1995 +

p
n+ :::

and y =

r
n+

q
1995 +

p
n+

p
1995 + :::

are solution of the system�
x =

p
1995 + y

y =
p
n+ x:

()
�
x2 = 1995 + y
y2 = n+ x

:

Let y 2 N be such that 1995 + y is a perfect square,
that is 1995 + y = (44 + t)2 :
Then x = 44 + t; y = x2 � 1995 = (44 + t)2 � 1995 = t2 + 88t� 59
and n = y2 � x =

�
t2 + 88t� 59

�2 � (44 + t) =
t4 + 176t3 + 7626t2 � 10 385t+ 3437 for any t 2 N
(because P (t) := t4 + 176t3 + 7626t2 � 10 385t+ 3437 � 1 for any t 2 N).
Thus, for any t 2 N we have (x; y; n) =

�
44 + t; t2 + 88t� 59; P (t)

�
For example for t = 1 we obtain x = 45; y = 84; n = P (t) = 855:

Remark.
More general nested root

zn :=

vuuuutp+ r

vuuutq + r

vuut
p+ :::+ r

s
:
p+ q + (�1)n+1 (p� q)

2
; n 2 N; p; q; r > 0

can be reduced to nested root xn;considered above.
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Indeed, since
zn
r2
=

vuuuut p

r2
+

vuuut q

r2
+

vuut p

r2
+ :::+

s
:
p=r2 + q=r2 + (�1)n+1

�
p=r2 � q=r2

�
2

then denoting xn :=
zn
r2
; a :=

p

r2
; b :=

q

r2
we obtain

xn :=

vuuuuta+

vuuutb+

vuut
a+ :::+

s
:
a+ b+ (�1)n+1 (a� b)

2
; n 2 N:

Problem 3.
Explore convergence and �nd limit of sequence (an):
a) an+2 =

p
7�

p
7 + an; n 2 N and a1 =

p
7; a2 =

p
7�

p
7;

b) an+2 =
p
19�

p
5 + an; n 2 N and a1 =

p
19; a2 =

p
19�

p
5;

c) an+2 =
p
9�

p
23 + an; n 2 N and a1 =

p
9; a2 =

p
9�

p
23:

And again, instead solving all these problems we will explore situation
in general, namely for given positive real numbers a; b such that a2 > b
we will consider two sequences (xn) and (yn) de�ned recursively

xn+2 =
p
a�

p
b+ xn; n 2 N; where x1 =

p
a; x2 =

p
a�

p
b

and
yn+2 =

p
b+

p
a� yn; n 2 N; where y1 =

p
b; y2 =

p
b+

p
a .

Both sequences can be de�ned by the following system of recurrences
of the �rst order:

(S)
�
xn+1 =

p
a� yn

yn+1 =
p
b+ xn

; n 2 N and x1 =
p
a; y1 =

p
b:

Let � (t) :=
p
a� t; � (t) :=

p
b+ t and ' (t) := � (� (t)) =

p
a�

p
b+ t;

 (t) := � (� (t)) =
p
b+

p
a� t:

Then

(S�)
�
xn+1 = � (yn)
yn+1 = � (xn)

; n 2 N [ f0g and x0 = y0 = 0:

and xn+2 = ' (xn) ; yn+2 =  (yn) ; n 2 N where x1 =
p
a; x2 =

p
a�

p
b

and yn+2 =  (yn) ; n 2 N; where y1 =
p
b; y2 =

p
b+

p
a:

Since ' (t) is de�ned and decrease on I :=
�
0; a2 � b

�
then for t 2 I

0 = '
�
a2 � b

�
< ' (t) < ' (0) =

p
a�

p
b;that is ' (I) =

�
0;
p
a�

p
b
�
:

To provide existence of xn for any n 2 N we should claim
' (I) � I ()

p
a�

p
b < a2 � b () 1 <

�
a2 � b

� �
a+

p
b
�

and x1 2 I ()
p
a < a2 � b () b < a2 �

p
a:

Thus, for further we assume that positive a; b satis�es to inequalities

(1) 1 <
�
a2 � b

� �
a+

p
b
�
and

(2) b < a2 �
p
a:

Assuming that both sequences are convergent and denoting
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x := lim
n!1

xn; y := lim
n!1

yn we will consider system of equations�
x = � (y)
y = � (x)

()
�
x = ' (x)
y =  (y)

.

Let h (t) := t� ' (t) = t�
p
a�

p
b+ t: Note that h (t) is increasing

function on (0;
p
a) and also note that � (t) ;  (t) are decreasing

functions on (0;
p
a) and � (t) is increasing function.

Since h (0) = �' (0) = �
p
a�

p
b < 0 and h (

p
a) = h (x1) = x1 � ' (x1) =

x1 � x3 > 0 (because x1 > xn for any n > 1 and in particular x1 > x3)
then there is solution of equation x = ' (x) on (0;

p
a) and this solution

is unique because h (x) := x� ' (x) is increasing function on
(0;
p
a) = (x0; x1) :

Denoting this solution via x� and denoting y� := � (x�) we obtain two
identities x� = ' (x�) ; y� =  (y�) :
Note that x0 < x� < x1 implies
� (x0) < � (x�) < � (x1) () y1 < y� < y2
and ' (x0) < ' (x�) < ' (x1) () x3 < x� < x2:
Before moving further and taking in account that x1 > x2 > x3
we will prove (using Math Induction) that inequality xn > x3
also holds for any n � 4:
We have x1 > x2 > x3 =) ' (x1) < ' (x2) < ' (x3) ()
x3 < x4 < x5 and noting that '2 (t) := ' (' (t)) increase on I we obtain
x0 < x2 =) '2 (x0) < '2 (x2) () x4 < x6 and
x0 < x3 =) '2 (x0) < '2 (x3) () x4 < x7:
Hence, x4; x5; x6; x7 > x3 and for any n � 4 assuming
xn; xn+1; xn+2; xn+3 > x3 we obtain

xk+4 = '2 (xk) > '2 (x3) = x7 > x3; k = n; n+ 1; n+ 2; n+ 3:
Thus, xn � x3 for any n 2 N with equality only if n = 3:
Also note that for any n 2 N obviously holds inequality
yn =

p
b+ xn�1 �

p
b = y1 with equality only if n = 1:

Since x3 < x� and for any n 2 N holds inequalities
x3 � xn and ; y1 � yn and y1 < x then

jxn+2 � x�j =
��x2n+2 � x2���
xn+2 + x�

=
jyn+1 � y�j
xn+2 + x�

=

jxn � x�j
(xn+2 + x�) (yn+1 + y�)

<
jxn � x�j
4x3y1

=
jxn � x�j

4
�p

a�
p
b+ a

�p
b
:

If 4
�p

a�
p
b+ a

�p
b > 1 then from

jxn+2 � x�j <
jxn � x�j

4
�p

a�
p
b+ a

�p
b

immediately follows that (xn) is convergent sequence.

Thus, if 4
�p

a�
p
b+ a

�p
b > 1 then lim

n!1
xn = x� and

lim
n!1

yn = lim
n!1

p
b+ xn�1 =

p
b+ x� = y�:

Thus, proved the
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Theorem.
If two positive real numbers a; b satis�es to inequalities (1), (2) and
(3)

�
a�

p
b+ a

�
b > 1=16

then sequences (xn) and (yn) de�ned recursively by system of
recurrences (S) both convergent and positive solution (x�; y�)

of the system
�
x =

p
a� y

y =
p
b+ x

are their limits, respectively.

Consider application of the Theorem to Problem 3.
a) For a = b = 7 we have

�
a2 � b

� �
a+

p
b
�
� 1 =

�
72 � 7

� �
7 +

p
7
�
� 1 =

42 (7 + 2)� 1 = 377; a2 �
p
a� b = 72 �

p
7� 7 > 39 and

16
�
a�

p
b+ a

�
b� 1 = 16

�
7�

p
14
�
7� 1 > 16 (7� 4) 7� 1 = 335:

Also, since
�
x =

p
7� y

y =
p
7 + x

()
�
x = 2
y = 3

then lim
n!1

xn = 2; lim
n!1

yn = 3:

b) For a = 19; b = 5 inequalities (1) ,(2) obviously holds and
16
�
a�

p
b+ a

�
b� 1 = 16

�
19�

p
24
�
7� 1 > 16 (19� 5) 7� 1 = 1567:

Also, since
�
x =

p
19� y

y =
p
5 + x

()
�
x = 4
y = 3

then lim
n!1

xn = 4; lim
n!1

yn = 3:

c) For a = 9; b = 23 inequalities (1) ,(2) obviously holds and
16
�
a�

p
b+ a

�
b� 1 = 16

�
9�

p
23 + 9

�
23� 1 > 16 (7� 6) 7� 1 = 111

Also, since
�

x =
p
9� y

y =
p
23 + x

()
�
x = 2
y = 5

then lim
n!1

xn = 2; lim
n!1

yn = 5:

Remark.
Consider now for positive a; b; c following kind of nested rootss

a� c
r
b+ c

q
a� c

p
b+ c

p
a+::::s

b+ c

r
a� c

q
b+ c

p
a� 


p
b+ ::::::::

or more precisely two sequences (an) and (bn) which de�ned
by system of recurrences:

(i)
�
an+1 =

p
a� cbn

bn+1 =
p
� + can

; n 2 N and a1 =
p
a; b1 =

p
b:

Since (i)()

8>><>>:
an
c
=

r
a

c2
� bn�1

c
bn
c
=

r
b

c2
+
�n�1
c

then using notations

xn =
an
c
; yn =

bn
c
; a =

�

c2
; b =

b

c2
we can reduce exploration of

sequences (an) and (bn) sequences (xn) and (yn) de�ned by

(ii)
�
xn+1 =

p
a� yn

yn+1 =
p
b+ xn

; n 2 N and x1 =
p
a; y1 =

p
b:

and considered above.
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Problem 4.(Ramanujan�s nested square roots)
Prove that

3 =

r
1 + 2

q
1 + 3

p
1 + 4

p
1 + ::::;

Problem 5. (CRUX#2222)
Calculate the in�nite nested root:r

4 + 27

q
4 + 29

p
4 + 31

p
4 + :::::

And we will solve them both as one problem in the following
generalized formulation:
Let bn = b+ an; n 2 N[f0g where a; b > 0 and let

rn :=

vuut
a2 + b0

s
a2 + b1

r
a2 + b2

q
a2 + ::::bn�1

p
a2; n 2 N .

Prove that sequence (rn) converge and �nd r := lim
n!1

rn;

i.e. �nd the value of in�nite nested root

r =

vuut
a2 + b0

s
a2 + b1

r
a2 + b2

q
a2 + ::::bn�1

p
a2 + ::::

Solution.
Obvious that rn+1 > rn for any n 2 N and we will prove that (rn)
have upper bound, more de�nitely, that rn < b1 for any n 2 N.
For any natural k and n denote

rn (k) :=

vuut
a2 + bk�1

s
a2 + bk

r
a2 + bk+1

q
a2 + ::::bk+n�2

p
a2:

Then rn (k) =
p
a2 + bk�1rn�1 (k + 1)

Note, that for any n 2 N holds identity
(1) b2n = a2 + bn�1bn+1:
Indeed, b2n � a2 = (bn � a) (bn + a) = bn�1bn+1:
Using Math. Induction by n and identity (1) we will prove that
rn (k) < bk for any natural n and k:
1. Base of induction.
Let n = 1:Since bk+1 > b1 = b+ a > a then

r1 (k) =

q
a2 + bk�1

p
a2 =

p
a2 + bk�1a <

p
a2 + bk�1bk+1 =

p
b2k = bk:

2. Step of induction.
For any n 2 N, assuming that inequality rn (m) < bm
holds for any m 2 N; we obtain
rn+1 (k) =

p
a2 + bk�1rn (k + 1) <

p
a2 + bk�1bk+1 = bk:

Thus, in particularly we have rn = rn (1) < b1 and, therefore,
(rn)N is convergent sequence.
Moreover, we will prove that lim

n!1
rn (k) = bk for any k 2 N:

We have
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Variations on theme of Nested Radicals

bk � rn (k) =
b2k � r2n (k)
bk + rn (k)

=
a2 + bk�1bk+1 �

�
a2 + bk�1rn�1 (k + 1)

�
bk + rn (k)

=

bk�1 (bk+1 � rn�1 (k + 1))
bk + rn (k)

=
bk�1bk (bk+2 � rn�2 (k + 2))

(bk + rn (k)) (bk+1 + rn�1 (k + 1))
= :::

bk�1bk:::bk+n�3 (bk+n�1 � r1 (k + n� 1))
(bk + rn (k)) (rn�1 (k + 1) + bk+1) ::: (bk+n�2 + r2 (k + n� 2))

=

bk�1bk:::bk+n�3
�
a2 + bk+n�2bk+n � a2 � bk+n�2a

�
(bk + rn (k)) (rn�1 (k + 1) + bk+1) ::: (bk+n�2 + r2 (k + n� 2)) (bk+n�1 + r1 (k + n� 1))

=

bk�1bk:::bk+n�3 (bk+n�2bk+n � bk+n�2a)
(bk + rn (k)) (rn�1 (k + 1) + bk+1) ::: (bk+n�2 + r2 (k + n� 2)) (bk+n�1 + r1 (k + n� 1))

=

bk�1bk:::bk+n�3bk+n�2bk+n�1
(bk + rn (k)) (rn�1 (k + 1) + bk+1) ::: (bk+n�2 + r2 (k + n� 2)) (bk+n�1 + r1 (k + n� 1))

and since rn (k) > a for any n; k 2 N then

rn (k)�bk <
bk�1bk:::bk+n�3bk+n�2bk+n�1

(bk + a) (bk+1 + a) ::: (bk+n�2 + a) (bk+n�1 + a)
=
bk�1bk:::bk+n�2bk+n�1
bk+1bk+2:::bk+n�1bk+n

=
bk�1bk
bk+n

:

Thus, 0 < rn (k)� bk <
bk�1bk
bk+n

and lim
n!1

bk�1bk
bk+n

= 0

implies lim
n!1

(rn (k)� bk) = 0:
To be continued...

* Sign F before a problem means that it proposed by author of these
notes.
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