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(Inequalities, Recurrences, Boundness
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Abstract

By anology with continued fraction we will consider for given sequences

(pn) ) (an) , (bn)

finite and infinite "additive" and "multiplicative" Radical Constructions:

(SF) ”i/al +by pi/ag + by %/ag T ¥ by Pergfinit s
(SI) pi/al—kbl ”i/ag—i—bg p{/a3+...—|—bn Prtd/Apt1 T e
PF) A gfon /s i

(PI) ”i/al pi/ag %/ag Pnryfani1 + ..

which named, respectively, finite and infinite nested (continued)

radicals (additive and multiplicative).
As usual, the basis for the variations will be concrete problems.

Part 1. Inequalities and boundedness.
Probleml.

a) Prove that r, := \/2\/3\/4 e/ +1<3,neN;
b) Prove that r, := \/213/3{*/4\5/.... Yn<3neN (r=vi=1).

Solution.

a)

Solution 1.

. 1 1 1 1 n n—1 n—2 n—3 20
Sincer, = 22327425 ... (n+1)2" < 72" =22" 32" 42" " (n+1)
then, applying AM-GM Inequality we obtain
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n—1 n—2

o (2277043202 4 a2l (nh 1) 20N\T T e

Th < - - .
an—l 4 on=24 +2+4+1

Since 2" 1 4+ 272 4 4241=2"—1,

2.2 43-2" 2 284 (n41)-2° =3-2" —n — 2 then

W (3e2n—p—2\T ! —1\* ! 2" 1

Tiﬁ(w_nl) 2(3—;_1> = r, <3 2" <3

Solution 2.

In2 1 1 1
Since Inr,, = n——i—n—j—i—...—i—n(nij) and for any natural k holds inequality

In(k+1)<2ln(k+2)—In(k+3) <
(k+1)(k+3) < (k+2)? < 0<1

then In(k+1) 2l (k +2) — In (k +3)
n n + n n + — In +
lnr, = > o <> o =
k=1 k=1
z”: In(k+2) In(k+3)) _
= 9k—1 9ok -
In(14+2) 1 1
n(+2) mm+3) o Wm0+d) 0 3
21—1 mn on
b)

Solution 1.
Applying Weighted AM-GM Inequality to the numbers 2,3, ...,n
1

with weights w1 = —,ws = —, ..., w,—1 = — we obtain
2! 3! n!
1 1 1
1 1 *'+*'+m+*'
— i ] . i L =
T, = 22! - 33 nn! < 1 1 1
11 1 11
—t i
! + = + .+ ! 213l ! IR
12 (n—1)! .
T 1 1 R I R 1
E‘i‘g"‘r + 1 54-54- +*'
Solution 2.
Since Inn < n —1,n > 2 then
1 _ In2 In3 Inn 1 2 n—1
TR T N T TR T

1 1 1 1 1 1 1 1 1 3
ﬁ—i + 5—5 4+ ...+ m—ﬁ = —m< — r, <e<o.

Remark 1.(Better upper bound for r,).
Using more precise inequality Inn < n —1,n > 2 we obtain
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| _ln2+1n3+ +lnn<ln2+ln4+ln4+ 1 1 ot 1 1y
ST R TR A R R A YRR VTR A W S TR

In2 In2 In2 1 1 11In2 1

s Pyttt a1 Tar

111n2 1 1
T+ﬂ<ln2 = §<1n2 <= 1< In4 then r, < 2.

The same upper bound for r, gives
Solution 3.

1 1
Since n! >2-3"72, n > 2 and maI%(nﬁ = 33 then for & > 3 holds
ne

Since

1
1 1\ (k—1)! 1 1
kR = (k;k) < 33(k=1! < 32382 and, therefore,

—

1 1

r, =221 .33 . .pn! <22.323.....323"2 <
1,1 1 1
\/2 . 3§+3*2+...+3n,_*2 +... _ \/2 . 35 _ 4/12 < 2
Remark 2.

As generalization of considered above Problem 1 we will find upper bounds

for r, (k) := ’\“/k (k4 1)...¢/n and r (k) := {“/k (k4 1) . /N
Lemma 1.
For any natural numbers n > 3 and p holds following inequalities:

1 D
@ nw > (n+ )T

1
(IT) e > (n + p) PADEFD - mp)
Proof. (using Math Induction by p € N)
Inequality (I)

1 1
1. For p =1 we already have nn > (n+ 1)n+1.
1

1
2. For any p € N assuming nn? > (n + 1) +1” we obtain
1

1 1\n

1 N\n 1 %H 1
nwt = ()" > <(n+ 1)“”1)?) > ((n+ 1)("“)13) = (n+1) 7
Inequality (IT).

1 1
1. For p =1 we already have nn > (n 4 1)n+1
2. For any p € N using inequality (I) and assuming that inequality
1

1 S S
nn? > (n+ p) (D (+2)..(n+p) holds for any n > 3 and we obtain
1

1 1\ n _ 1 N\n 1 n
narFT — (m) > <(n+1)<”“>”> > (((n+1) +p)<("“>“)"'<"““’)> >

1 Nn+l 1
<(n 1 _|_p) (n+2)...(n+1+p) * = (n + (p + 1))(n+1)(n+2)...(n+p+1)

Applying inequality (II) for (n,p) = (k,p) ,where p=1,2,...n — k

to ry, (k) := ’\“/k (k4 1)...¢/n,3 < k <n we obtain

(©1985-2018 Arkady Alt 3
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(k) = k% (k + 1)k(k1+1) . ,nk(k+11)...n —

1 1 1 1 %
ok (64 DR (o T T )

1 1 1 1 % 1,1 1 1
EF <kk kR L k;kk) —krTRET T T« pR—1

1
So, 7y, (k) < kk=1 and since r, (k) T (n) then we have
i

r(k) = lim r, (k) < kk-1.

Problem 2.
a) For any real a > 0 determine upper bound for

ay = \/a+\/a+ a+ ... + y/a(n-roots), n € N;

B \/n+\/n—1+\/n—2+...+ﬁ

b) Let a, := Tn
Prove that sequence (a,)y is bounded.
Solution.
a) Sequence (a,)y can be defined recursively as follows
apt1 =+a+ ap,n € Nand a; =+/a.
In supposition that positive number M is upper bound for (a,)y and
since then a,+1 = va + a, < Va+ M we claim
Va+M <M < a+M <M? &< M?-M-a>0

M 1++v4a+1

2
14++v4a+1 14++v4a+1
LetM::%.Sincea1<M = \/E<% =
Vda < v/4a + 1+ 1 obviously holds and for any n € N, assumption

an < M implies ap41 = +va+a, <va+ M <M,
then by Math Induction a, < M for any natural n.

,n €N,

Remark. -
If a = 2 then any1 = 2 + an,n € N where a; = v/2 = 2cos 1 and,

therefore, az = /2 + 2 cos % = 2cos 213

. ™
For any n € N assuming a,, = 2 cos onF1

. m 771—
we obtain a,4+1 = 2+ a, = /2 + 2cos ontl 2cos on+2
T

Thus, by Math Induction we have a,, = 2 cos < 2 forany ne€N.

14++vV4da+1
ffor

2n+1

Formula M = a =2 gives us M = 2 as well.

1985-2018 Arkady Alt 4
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b) Since \/n+\/n1+\/n2+...+ﬁ>\/ﬁ then a, > 1.

Note that for any n € N holds inequality an11 < v1+ ay, -

\/n—i—l—&-\/n—i—...-i-\ﬁ 1
1+ n+vn—14+..4++vV1<
vVn+1 n+1\/ Vi

\/1+\}ﬁ\/n—l+\/n—2+...+\ﬁ=m

For any n € N\ {1} repeatedly applying this inequality we obtain

an<«/1+an1<\/1+\/1—|—an2<...<\/1+\/1+1/1+...+\/a:
\/1+\/1+\/1+...+\/T(n—roots) and,since

1+v4-1+1 1 1
\/1+\/1+\/1+...+\ﬁ§ + 5 + = +2ﬁthenan< +2\/3

for any n € N.

Indeed, a1 =

Remark.
Since \/nJr n—1+vVn—2+..+vVI<n+1foranyneN (can be
1
proved by Math Induction) then a,, < \/?;_ < 2, for any n € N and,
n

therefore, (a,)y is bounded from above.

Problem 3.
For any natural n > 2 prove inequality

\/2+ §/3+ "{/4+ Vo4 .+ Yn <2,
Solution.

For any natural n > 2 let 7o (n) = ¢/n and rip(n) = "/n—k+rr_1(n),
where 0 < k € {1,2,....,n—1}.

Thenry (n) = "Yn—1+7,(0)= "V/n—1+ /n,ra(n)= "/n—2+r (n)=
“Yn—24 Y= 1F iy () = "‘(/n—m = (ke D)+t Yo L Vi,
\/2+ §/3+ ‘{‘/4+ Vo+ ..+ n=r,_a(n)

and we have to prove that r,_5 (n) < 2.

For further we need the following

Lemma 2.
For any n > 3 and real h > 0 holds inequality ¥/n+h > ""W/n+1+ h.
Proof.

Wehave ¥/n+h> "Vntl+h < (n+h)"'>nm+1+h)" =

(©1985-2018 Arkady Alt 5
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n+1+h\"

n—+h
where latter inequality follows from

n+h>3>e> <1+1) <1+1> = ("HHL>
n +h n+h
Remark.
The Lemma can be proved by Math Induction without reference to e.
Note that {/n+h > "Wn+1+h < a, > b,, where a,, := (n + h)"+1
b, :=(n+1+h)"
1. Base of Math Induction.
a1—by=B+h)'—@+n)*=0B+n*'-3B+h)>*-3B+n)>-30B+h)—
(B3+h)>((3+h)—1)—3(B+h)’—-3@B+h)—1=
(3+h)>((3+h)(2+h)—3)—3(3+h)—1=
(3+h)* (h2+5h+3) =3B +h)—1 >3(3+h)>-3(B+h) —1=
3B34+h)(24+h)—1>18—-1=1T7.
2. Auxiliary inequality.

n—+h>

a b
For any n € N holds inequality ntl o, ol

Indeed,
Ung1bn > apbny1r = n+1+R0)"(n+14+h)">n+h)" " (n+2+n)""" =

— a71,+1bn > anbn-l—l-

n b’l’L

5 n+1 9 n+1
((n+1+h)) >((n+h) +2(n+h)> =
(n+h+1)°>m+h)?>+2(n+h) < 1>0.

3. Step of Math Induction.

. N . a b
For any natural n > 3 assuming a,, > b, and using inequality ntl o, el

n bn

. Gn41 b1
we obtain a1 =y - — > by - —FE = by, [ |
an bn
Corollary.

For any n > 3 and real h > 0 holds inequality /3 + h > /n + h.
Now we will prove that for any 0 < k < n — 3 holds inequality

k) < §/3—|— </3+ ‘\3/3+...+\3/§(k+1r00ts),

using Math. Induction by k.

1.If k=0 then /n < /3.
2.For any k such that 1 < k < n—3holds ry_1 ( \/3+ \/3+ V34 .. +3

(k roots) then, applying Corollary to h = ry_; ( ), we obtain

re(n) = "A/n—k+r_1(n) < 3—}—\/3—1—\/3—!— \/3—|— .+ V3(k+1 roots)

Let a; = ¥/3 and Gnt1 = V3 +a, ,n €N then a, <2 for any n € N.
Indeed, ¥/3 < 2 and from supposition a,, < 2 we obtain

(©1985-2018 Arkady Alt 6
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Unp1 = /B3Fan < V3+2=1+5<2.
Hence, 7y (n) <2 for any 0 < k <n — 3 and, therefore,
Tnoo(n) =2+ 7n_3(n) <V2+2=2.
For establishing upper bounds of nested radicals represented in the
next problem will be useful
Lemma 3.
For any positive real a,b and any natural p,n and k € {0,1,2,...,n} let

Ry (n) := f/a o 4 a0 1 a b (k + 1 radicals)

n—k—1

Then Ry (n) = bP {/a—}- a+ ...+ Ya(k + 1 radicals).

Proof. (Math Induction by k € {0,1,2,...,n}).

First of all note that Ry (n) can be defined recursively as follows:

Ry (n) == Va-b", Ry (n) = {/a-bP" " + Ryp_1 (n), k € {1,2,...,n}

Base of M.I.

Ry (n) = {a-bP" =" " ¢a, Ry (n) = ¢/a- """+ Ry (n) = a- b0 4 Ya b =
a1 Ya =" ¥a+ {/a.

Step of Math Induction.

For any k € {1,2,...,n} assuming Ry_1 (n) = b </a +/a+ ...+ ¥a

(k radicals) we obtain

Ry (n) = /a-0P"F + Ry (n) = i/a SpP T pp Tt (/a, +/a+ ...+ Ya=

n—k—1

bP {/a—i— a+ ...+ ¢a(k + 1 radicals).

Corollary 1.

Let (a,)y be sequence of non negative real numbers such that for
some positive real a and b holds inequality a, < a-b*",n € N.
Then for any n € N,k € {0,1,2,...,n} holds inequality

(1) \/an_k + v p—pg1 + ..+ Van < b2"_k_1\/a +1/a+ ... +va < My

Proof.
In particular for p = 2 from Lemmas 3 and 4 follows

\/an_k + \/an_kH + .o+ Va, < \/a b2 4 \/a 2T 4L Va2 =

n—k—1 n—k— 1++vV1+4
p2" " \/a+\/a+...+\/5§M~b2 kl,whereM:%

(see solution to Problem 2a).

Corollary 2.(Criteria of convergence \/al + Vas + ...+ ay).

(©1985-2018 Arkady Alt 7
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Let (ay, )y be sequence of non negative real numbers and let r,, := \/al +\/as + ... + /an,.
Then sequence (r,,)y is bounded from above iff a,, < a- b¥" ., n e N for some

positive a, b.
Proof.

Let M be some upper bound for (ry)y,that is r, < M for any n € N and
we obtain

a}/zn = \/O—i—\/O—i—...—ﬁ—\/O—l—‘/an < \/al—l—\/ag—ﬁ—...—i—,/an < M. Hence, a,, <
a- b,
where a =1 and b = M.

If a, < a-b*",n €N for some positive a, b then by corollary 1 for k = n—1 we
obtain .
rpn < M-b* =M -b.

Problem 4.
For any n € N find upper bound for n—nested radical (contain n radicals):

a-\/22°+\/221+\/222+...+¢22"71;
b.\/10+\/21+ 22 4 . +4/2m
Y Y
d-\/1+\/3+\/5+...—|—\/2717—1;
e. \/12+\/22+ 32+ ... +Vn?
f.\/1!+\/2!+\/m

Solution. ) o
a.Since a,, =22 =1- (\/5) then by corollary for k =n,a =1,b =2
we _obtain

\/22°+\/221+\/222+...+x/22"—1=¢§-\/1+1\/1+ I+ +VI<
ﬁmax{1,1+\/5}:\/§+\/ﬁ<5

2 2 2°
b. Since n < 2", n € NU {0} then 2" < 22""" and, therefore,

\/10 + \/21 +V2 4.+ < \/10 + \/221‘1 VP L V2 <

2+ /10 5
\/1+q<,/1+§<2.

c.,d. Noting that n < 2n —1 < 22" for any n € N we obtain

\/1+\/2+\/m<\/1+\/3+\/5+...+\/m<

(©1985-2018 Arkady Alt 8
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\/10+\/21+ 224 .+ V2rrl <2
\/12+\/22+\/32+...+\/n2<\/1+\/22+ 324+ .. +vn?<
\/220 +\/221 V22 4V

e. Since 2n — 1 < n? < 22" for any n € N (because n? < 2" for n > 4,

implies 2" < 22" for any n € NU {0} and obviously n? < 22"
for n = 1,2,3) then

\/12+\/22+\/32+...+\/n2<\/22°+\/221+\/222+ 4Vt <g

2111

f.. First note that for any n € N holds mequahty n! <2

1 2%"
Indeed, (n+1)! < ;
n' 2271.

Then since 1! < 22" =2 and n! < 22" implies
1)! nor o 22 n
(n+1)!:n'-(n+|) <22" . =22
n

! 22n—1
we conclude by Math Induction that n! < 22"_1,71 eN.
Hence,

\/1!+\/2!+\/3!+...+\/H < \/1+\/221_1+\/222‘1+...+\/22"_1 <

= n+1<22" foranynEN.

Problem 5.
Let ay, := §/1+ €/2+ {"/34— Y4+ ...+ In,neN.
Prove that:

(1) a3, <14 V2 a, foranyneN;

(2) Sequence (ay,)y is convergent.

Solution.

1. Noting that k < 23" 7 (k—1) for any k € N\ {1} (equality
holds only if k = 2) we obtain

n+1_1+\/2+\/3+ \/4+...+ vVn+ Yn+1<

144 2+§/233‘2-2+</234—2-3+...+3/23”"2(n—1)+ V23" =

1+ §/2+ {’/23“ 2+ {/234’2 B4+ Y2BP(n—1) 428 =
3 3 3—2 3 4-2 n—3 3
1+\/2+\/23 .2+\/23 B 42— D)+ n=..=

(©1985-2018 Arkady Alt 9
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1+ §/2+2§/2+ \3/3+...+ V(=1 +n=1+72a,.
2. First we will prove that a,, < V/4for any n € N.
Indeed,a1:1<ﬂanda2:\3/1+\3/§<\3/1 — {2<3.
For any n € N assuming a,, < v/4 we obtain
af’LH < 1+\3/§-an <14+ 2. 3/1:3and, therefore, a,41 < I3 < 4.
Thus, by Math Induction, a, < /4for any n € N and since Ap+1 > G
for any n € N we can conclude that sequence (a, )y is convergent as
increasing and bounded from above.
Another solution of 1.
Noting that n < 23"~ (n — 1) for any n € N\ {1} (equality holds
only if n = 2)
For any n €N and k € N U{0} such that k£ < n let rg (n) := 0,and
rpr1(n) = Yn—k+ry(n),ke€{0,1,2,...,n}.Then a,, =, (n),Vn € N.
Also note that ap41 =rpt1(n+1) = /1+r, (n+1).
Note that 7y (n+1) = ¢/n+ 1< ¢/23"7 2 . (n+1-1) =

2" Ymn=2""r (n).
Let 1<k <n beany. Assuming r4 (n+1) < 23" " "4 (n) and since
n+1-k<2" """ (n—k) forany k=0,1,...,n — 1(equality holds
only if k =n —1) we obtain
Tepi(n+1)=Yn+1—k+r(n+1)< /2" T (n—k)+25 " r(n) =
23" = k) +rr(m) =25 i (n)
Thus, by Math Induction we proved 7, (n + 1) < 23"y (n)
for any 0 < k <n. In particular for £k = n we have
i1 = Tnal (n+1) =3 1—|—rn(n+1)

i/l +23" 7, (n) = Y1428 T, (n) = V1 + 2a,.

Thus, af’l+1<1+\/§~an foranynEN.

2. Infinite nested square roots.
As usually we start from concrete problems which motivate consideration
of situation represented in this problems in general.

* y¢ Problem 1.

Let 7, := \/1 + fl\/l + fg\/1 + fa /1 + o fuV/1,
where f, be n — th Fibonacci number defined by

fot1="[fn+ fn-1,n€Nand fo =0, fi =1.
Prove that sequence (r,) is convergent and find r := lim r,,

n—oo

that is find the value of infinite nested root

:\/1+f1\/1+f2\/1+f3m

Solution.

- rka t
(©1985-2018 Arkady Al 10



Variations on theme of Nested Radicals

First we will ﬁnd the sum f; - q+ fz P+t foq

Let S, (q) :== Z frg® and S( ) = n§1fnq

Since A (f - ¢ ) 1@ = frd® = fod T+ foo1d"T = frgt =

(= 1) " fr+¢" " frea - q2 then

frr1-q" T = frg = i (fes1d" = fud®) = (¢ —1) kil ¢* fr+q* i o =

k=1 k=1
@08 @+ S =l 08,0+ 7 (£ -, -

S
(q—l)égn (@D + P (Sn(@) =" fn) = (*+a—1)Su(q) — "2 fn.

Hence, (¢ +q—1)Su(q) = fas1-q" = fig+¢" 2 fn
Jnt1- qn+1 - fig+ qn+2fn J1q — qn+2fn - qn+1fn+1
S = —= S = .
"(q) q2+q_1 H(Q) 1_q_q2
. o . 1 V5-1
Since lim {/f, = ¢ then radius of convergency S (¢q) equal p =—5 =
—6.
5—1
If |q] < \[2 then lim ¢"*2f, = lim ¢"*!f,,1 = 0 and, therefore,

= q
S = nq" = ————for any such q.
(9) n;fq — y q

In particular

2

1 n 1/2 - n 2n+27 n 2n+1 n n
Sn( ) Doty I 12-h Funt/2 o Sy
2 2 2n 1-1/2—(1/2) 2n on

Note that r,, = \/1+f1\/1+f2\/1+f3\/1+...+.fn\/1—\/1+\/c1+\/c2+,/c3+...+.\/a

where ¢, = fl 2n ' f,%l (co=1)
Since by welghted AM—GM Inequality

e = SRR FYP < kg fob g = S () andSn<;)<2

then ¢, < 92" and, therefore, sequence (r,,)y is convergent by

Corollary 2.(Criteria of convergency of z,, :\/al + Vas + ...+ ay).

Numerical experiments give us 71 = 1.4142,r5 = 1.5538,r3 = 1.6288, ...,
5 = 1.753 1, Te6 = 1. 755, 7 = 1.7551

So, infinite nested root \/l + f1 \/1 + fg\/l + fg\/l + ...+ .fnV1 + ... define

numerical constant which approximately equal 1.755.
Remains the question: Can be this constant expressed via already well known
constants?

(©1985-2018 Arkady Alt 11
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Problem 2 (Problem.(2062.Proposed by K.R.S. Sastry, Dodballa-
pur, India).
Find a positive integer n so that both the continued roots

\/1995+ \/n—|— 1995 + v/ + ...

and

\/n+ \/1995+\/n+\/1995+...

converge to positive integers.
We will return to solving this problem later, having first studied
the behavior of the sequence

b+ (—1)"" (a—b
Tpi= |a+,|b+ a+...+\/.a+ * 2) (a )(nroots),nGN

where a and b be positive real numbers.
The sequence (z,)y can be defined recursively as follows:

T = axg Va+ Vb, Tpyo =Va+Vb+xz,,n€N.
Let h(z):= Va+ b+ x. Then x40 = h(x,),n € N.

Since xl < xg9 < x3 and for any n € N, assuming xo,_1 < Top < Ton41
we obtain h (x2,-1) < h(z2n) < h(Zant1) <= Tant1 < Tani2 < Tants
Thus, by Math Induction proved that z,, < z,41 for any n € N.

Let m := max {a,b} and m,, = \/m + \/m + /m... + v/m(n roots).

1+ v4 1
% then (z,) is bounded

from above and, therefore, (z,,)y is convergent as increasing sequence.
Let z := lim =, > /a. Then z = hm h(xy) —h(lim xn) =h(z) &

n—oo

2
Va+vb+z=z (xz—a)zzx—kb — (x—%) Zl-i-%.

x T

Since x, < m,,vn € N and m,, <

a\? a
Note that (x - 7) strictly increase in (y/a,00) (because x — — >0
x x
1 b
for x > \/a and increase in (0,00)) and — + — strictly decrease.

) a2 1 b . )
Hence, since (m - 7> - =+ ] is negative for z = \/a

x x

and it is positive for big enough positive x then equation
a2 1 b . .

(a? - ;) = + - has a unique solution on (y/a,00).

So, infinite nested root \/a + \/b ++vVa++vVb+ ... lim z, =x, where x

is unique solution of equation 2% — 22%a — x4+ a? — b =0 in (\/a, 00).

Together with infinite nested root \/a + \/b +vVa+vVb+ ...

(©1985-2018 Arkady Alt 12
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we also will consider nested root \/b + \/a + b+ Va+ ...

which is defined as limit of sequence (y,,) defined recursively by
y1=\%,y2= b+\/avyn+2:\/b+\/a+yn7n6N-
But, some times more convenient simultaneous definition sequences
(zn), (yn) by the following system of recurrences
Tpnt+1 = /0 + Yn
R s neN
B yia = Voo
with initial conditions z; = v/a and y; = V.
As follows from the proved above both sequences are convergent
and, therefore, z := lim z, > +/a,y := lim y, > NG
n—00 n—oo

satisfies to system of equations

(E) { r = a+y

y=vb+zx.
Now we came back to solution of the Problem 1.
Solution

Consider two sequences (), (yn) defined by the system of
recurrences (R) for a = 1995 and b = n.

Then:c\/1995+ n+ /1995 ++/n + ...

and y = \/n+\/1995+\/n+\/1995+...

are solution of the system

{ v=VI9%5ty { 22 = 1995 + y

y=+n+cx. y2:n+x

Let y € N be such that 1995 + y is a perfect square,
that is 1995 4+ y = (44 +1)°.
Then z =44 + ¢, y = % — 1995 = (44 + ¢)* — 1995 = ¢2 + 88¢ — 59
andn=y> - = (t2+88t759)27(44+t) =

4 1 17613 + 762612 — 10 385t + 3437 for any t € N
(because P (t) :=t* + 176t + 7626t — 10 385t + 3437 > 1 for any t € N).
Thus, for any t € N we have (z,y,n) = (44 + t,t* + 88t — 59, P (1))
For example for ¢ = 1 we obtain x = 45,y = 84,n = P (¢) = 855.

Remark.
More general nested root

—1)t gy —
p+q+( 2) (p q>,n€N,p,q,T>0

Zp = A |lPptTAlq+T p+...+r\/.

can be reduced to nested root x,,,considered above.

- rka t
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r2 4 q/r2 + (=) (p/r2 — q/r?
Indeed, since Z—g = % + % + % + ...+ \/p/ a/ (=1 (p/ a/ )
r r r r 2
then denoting z,, := Z—;”, a:= %, b= % we obtain
r r r

1)t g =
Tp = |la+,|b+ a—l—...+\/.a+b+( 2) (a b),neN.

Problem 3.
Explore convergence and find limit of sequence (ay,):

a) anio=\7—VT+an,neNand a; = V7,02 = V7 —VT;
b) ani2 =19 -5+ a,,n €N and a; = v19,a9 = V19 — /5;
€) Gnio=+v9—v23+a,,neNand a; =v9,a; = V9 — V/23.

And again, instead solving all these problems we will explore situation
in general, namely for given positive real numbers a, b such that a? > b
we will consider two sequences (z,,) and (y,) defined recursively

$n+2:\/a*\/717+7$n, n € N, where z1 = /a, 25 = a—+b

and

Ynio = /D + /@ —yn, n €N, where y; = Vb, y2 = /b+ a .

Both sequences can be defined by the following system of recurrences
of the first order:

(S) {z"ii:ﬁm , ne€N and 21 = Va,y1 = Vb.

Let a(t) :=+va—1t,8(t):==vb+tand ¢ (t) :=a(8(t) = vVa—Vb+t,

¢}(1t) =B (a(t) = vVb++Va—t
Then

(S’) { Czjni-ll : g((gn; ,neNU {0} and xg = yg = 0.

and Tpi2 = © (2n) , Ynt2 = ¥ (yn) ,n € N where 21 = /a, 29 = Va — Vb
and yni2 =1 (yn),n €N, where y; = Vb, 1o = /b + Va.

Since ¢ (t) is defined and decrease on I := (0,a* — b) then for t € I
0=¢p(a®>—b) <p(t) <¢(0) = Va — Vbthat is ¢ (I) = (0, a—\/E) .
To provide existence of x,, for any n € N we should claim

e(I)CI < Va-Vb<a®—b < 1< (a®>-) (a+ﬁ)

and 71 € [ < Ja<a®>—-b < b<da® - /a.
Thus, for further we assume that positive a,b satisfies to inequalities

(1) 1< (a®-0b) (aJr \/B) and
(2) b<a®—/a.

Assuming that both sequences are convergent and denoting

- rka t
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z:= lim x,,y:= lim y, we will consider system of equations
r=al(y) {$=<P(90)
—
{yzﬁ(:ﬁ) y=1v(y)

Let h(t):=t—¢(t) =t — Va—+b+t. Note that h(t) is increasing
function on (0,+/a) and also note that a (t),% (t) are decreasing
functions on (0,+/a) and 8 (¢) is increasing function.
Since h(0) = —¢ (0) = —Va—Vb<0and h(va) =h(z)) =z — ¢ (1) =
x1 —x3 >0 (because x1 > x,, for any n > 1 and in particular z; > x3)
then there is solution of equation = ¢ (z) on (0,+/a) and this solution
is unique because h (z) := 2 — ¢ (x) is increasing function on
(0, \/6) = (xo,xl) .
Denoting this solution via z, and denoting y. := 8 (x,) we obtain two
identities T, = @ (T4) , ys = ¥ (Yx) -
Note that x¢ < x. < x1 implies
B($0)<ﬁ(l’*) <ﬁ($1) — Y1 <Y« <Y2
and (x0) < @ (z:) <@ (21) <= 23 < T4 < T2
Before moving further and taking in account that z; > zo > 3
we will prove (using Math Induction) that inequality z,, > x3
also holds for any n > 4.
We have ©1 > x2 > 23 = ¢ (21) < ¢ (22) < p(x3) <=
x3 < 24 < x5 and noting that ¢, (t) := ¢ (¢ (t)) increase on I we obtain
To < Ty = ©y (o) < @y (2) <= x4 < 6 and
To < Tz = Yy (T0) < @y (x3) = w4 < 7.
Hence, x4, x5, z6, x7 > x3 and for any n > 4 assuming
Ty Tyt 1y Tnt2, Tnts > T3 We obtain
Thta = @ (Tk) > 0o (x3) =27 > 23,k =n,n+1,n+2,n+3.
Thus, x,, > x3 for any n € N with equality only if n = 3.
Also note that for any n € N obviously holds inequality
Yn = /0+Tp_1 > Vb= y1 with equality only if n = 1.
Since z3 < z, and for any n € N holds inequalities
r3 <z, and , y1 <y, and y; < x then

22, — 22| _
x x
|xn+2 o x*| _ n+2 * — ‘yn*‘rl y*| —
Tpy2 + Ty Tpt2 + T
|Tn — ] | — 24| |Tn — 2]

(Tni2 + 2x) (Yng1 + Ys) dx311 4 (m) \@
If 4 (m) Vb > 1 then from
|Ty — T
1(Va=Vb+a) Vb
immediately follows that (x,) is convergent sequence.
Thus, if 4 (m) Vb > 1 then nh—{go T, = T, and
lim y, = nlin;o Vb+ a1 =vVb+z, =y..

n—oo

Thus, proved the

|Znt2 — 24| <

- rka t
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Theorem.

If two positive real numbers a, b satisfies to inequalities (1), (2) and
(3) (a—vb+a)b>1/16

then sequences (z,,) and (y,) defined recursively by system of
recurrences (S) both convergent and positive solution (z.,y.)

r=+a—y . .
f th t their limit tively.
of the system { y=vbTa are their limits, respectively

Consider application of the Theorem to Problem 3.
a) For a = b =7 we have (a® —b) (a+\/5> —1=(T=-7)(T+V7) -

42(742) —1=1377, a> — Ja—b=T7> — /77> 39 and
16(a—vb+a)b—1=16(7—V14)7—-1>16(7—4)7—1 = 335.
o VT — r=2

Also, blnce{ Y s — Y =3 then lim z,, =2, hm Yn = 3.

b) For a =19,b =5 inequalities (1) ,(2) obviously holds and
16 (a \/b+a)b 1=16(19—-v24)7—1>16(19—-5)7 — 1 = 1567.

C 4
E%CQ

. T =419 —y r=4
Also, since { y=5Fz <= { y=3 then nh_)rr;o T, =4, hm Yn = 3.
c) For a =9,b = 23 inequalities (1) ,(2) obviously holds and

16(a—Vb+a)b—1=16(9—+v23+9)23—-1>16(7—6)7—1=111
. r=+v9—-y r=2
Also, bmce{ y= VBT = {

y=5 then lim =z, = 2, hm Yn = D.

Remark.
Consider now for positive a, b, c following kind of nested roots

\/aC\/bJrC\/aC\/m

\/b—l—c\/a—C\/b—i—c a— b+ ........

or more precisely two sequences (a,,) and (b,) which defined
by system of recurrences:

. Gnt+1 = Va — cby,

i) boiy = VB Fecay ,n€Nand a; = /a,b; = Vb.

Qn a bnfl
. . . 2 . .
Since (i) < ¢ ¢ & then using notations
b [0, @
¢ c? c
an bn, @ b .
Tp = —,Yn = —,a = —,b = — we can reduce exploration of
¢ c

sequences (a,) and (b,) sequences (z,) and (y,) defined by
. Tn+1 = Va4 — Yn _ _
(i) { i1 = b ,n€Nand z; = va,y1 = Vb.

and considered above.

- rka t
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Problem 4.(Ramanujan’s nested square roots)
Prove that

3= \/1+2\/1+3\/1+4\/1+....;
Problem 5. (CRUX#2222)
Calculate the infinite nested root:

\/4—|—27\/4+29\/4—|—31\/4+ .....

And we will solve them both as one problem in the following
generalized formulation:
Let b, = b+ an,n € NU{0} where a,b > 0 and let

Prove that sequence (r,) converge and find r := lim 7,

n—oo

i.e. find the value of infinite nested root

r= a2—|—b0\/a2+b1\/a2+b2\/a2—|—....bn_1 a?+ ...

Solution.

Obvious that r,+1 > r, for any n € N and we will prove that (r,,)
have upper bound, more definitely, that r, < by for any n € N.
For any natural k£ and n denote

rn (k) := 1| a® + bkl\/aQ + bk\/a2 + b1 \/a2 + oobprn—2Va2.

Then r, (k) = \/a2 +bp_17rn—1 (E+1)

Note, that for any n € N holds identity

(1) b2 =a? + bp_1byy1-

Indeed, b2 — a? = (b, —a) (b, + @) = bp_1bpy1.

Using Math. Induction by n and identity (1) we will prove that
T (k) < by for any natural n and k.

1. Base of induction.

Let n = 1.Since bx41 > b1 = b+ a > a then

r1 (k) = /a2 + bp_1Va® = /a2 + by_1a < \/a2 + by_1bp+1 = /b7 = by.
2. Step of induction.
For any n € N, assuming that inequality r,, (m) < by,
holds for any m € N, we obtain
Tt (k) = \/a2 +b_rn (k+1) < \/&2 + br—1bg+1 = by
Thus, in particularly we have r,, = r, (1) < by and, therefore,
(rn)y 1s convergent sequence.
Moreover, we will prove that lim r, (k) = b, for any k € N.

n—oo
‘We have

- rka t
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B —r2(k)  a®+bpabpp — (@ +bparn i (k4 1))

b = (k) = bk+7": (k) bi + 7 (k) -
bi—1 (bpg1 — -1 (E+ 1)) __ beaby (bkt2 —Trn—2(k+2)) _
br, + 7 (K) (b + 7n (k) (b1 + 701 (B +1))

be—1b...bkyn—3 (bggn—1 — 71 (k+n —1))
(bk' T (k)) (T'n—l (k + 1) + bk-i-l) (bk-‘rn—Q + 72 (k +n— 2))

b 10k b3 (% + bypn—2bp4n — a* — byin_2a)
(b + 71 (B)) (rp—1 (K4+ 1) + bkt1) oo (bggn—2+ 712 (E+n—2)) (bggn-1+7r1 (k+n—-1))

bi—1bk... ks n—3 (begn—2bktn — Dkyn—2a)

(b + 70 (k) (rp—1 (B 4+ 1) + brt1) oo bkgpn—2+ 712 (k+n—2)) (bpgn—1 + 71 (k+n—1))

b1k bkt n—3bkyn—20p1n—1

(b + 71 (B) (re1 (K 4+ 1) + bkt1) oo (bgan—2 + 12 (E+n—2)) (b1 + 71 (k+n—1))

and since 7, (k) > a for any n,k € N then

ro ()b, < b1 bk n—3bkrn—2bk1n—1 _ bk—1bpe Dk yn9bkyn—1 _ Dk_1by
" (bk +a) (bg+1 + @) oo (bpyn—2 + @) (bkyn-1+a)  bki1bri2.bbin—10kin  brin
' br_1b br_1b
Thus, 0 <1, (k) — b < PR and lim ——2F =

k+n n—0o0 karn

implies lim (r, (k) —bg) =0.
n—oo
To be continued...
* Sign % before a problem means that it proposed by author of these
notes.
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